Mecatrónica

La mecatrónica es una ciencia capaz de aplicar y administrar novedosos sistemas de alta calidad para dar soluciones a las necesidades del país y contribuir con el desarrollo de la humanidad.

La mecatrónica - palabra acrónima de mecánica y electrónica -, inunda casi todos los aspectos de la sociedad. Actualmente las máquinas, equipos, electrodomésticos y unidades informáticas son concebidos desde una perspectiva mecatrónica. Es decir, son sistemas que mezclan en su funcionamiento, componentes mecánicos y electrónicos. La sinergia entre dichas áreas busca crear productos inteligentes, con mejores cualidades respecto a los demás, capaces de procesar paralelamente diversas informaciones para optimizar el funcionamiento, mejorar la productividad y el desempeño.La mecatrónica no es, por lo tanto, una nueva rama de la ingeniería, sino un concepto recientemente desarrollado que enfatiza la necesidad de integración y de una interacción intensiva entre diferentes áreas de la ingeniería.

Por tratarse de un término recientemente acuñado aún no se conoce una definición única sobre el mismo. Sin embargo, para la gran mayoría, la mecatrónica es básicamente, la combinación adecuada de la ingeniería mecánica, electrónica, informática y de control, aunque esta última, se menciona poco, ya que usualmente está combinada con alguna de las tres anteriores. La integración interdisciplinaria es sin lugar a dudas, el recurso más importante que posee esta nueva tecnología, y la que le da el valor agregado respecto a otras que manejan conceptos similares. Los sistemas que convergen en la mecatrónica son:

• Sistema mecánico: encargado de la generación de fuerzas (motores, turbinas etc.)

• Sistema electrónico: partes y procesamiento de señales electrónicas.

• Sistema programable y de control: control de procesos (PLC). La teoría de control está basada en la controlabilidad, a través del análisis lógico, de una situación y/o sistema, con el fin último de maximizar los beneficios de estos para la ciencia y la humanidad. El objetivo es eliminar toda incertidumbre y tener certeza del sistema para mejorarlo.

Historia de la Mecatrónica y su Evolucion

A medida que la humanidad avanza, lo hacen también las ciencias. Los conocimientos, las técnicas y los nuevos equipos son desarrollados para enfrentar y solucionar los problemas que afectan al hombre. El primer gran avance tecnológico aplicado a la producción se dio en la Revolución Industrial – segunda mitad del siglo XVIII y principios del XIX –, periodo en el cual, entre otras cosas, fue aplicado el conocimiento y la tecnología existente para desarrollar nuevas y mejores maquinas, disminuyendo costos, agilizando procesos e industrializando la manufactura. Después de la industrialización y gracias a los aportes de la electrónica y la informática, la industria desarrolló nuevos métodos y perfeccionó otros. La búsqueda de soluciones para enfrentar los crecientes retos entregó como resultado nuevas ideas, sabiduría e ingenierías. Aunque no existe una fecha exacta a la que se pueda adjudicar el nacimiento de la mecatrónica, expertos y conocedores del tema aseguran, que esta ingeniería nació en la década de 1980, sin embargo, el libro Informática “un enfoque constructivista”, afirma que el concepto ‘mecatrónica’, fue desarrollado hace 15 años, por una firma japonesa fabricante de robots, y aunque en un principio hacia referencia solamente a la integración de la mecánica y la electrónica en un producto, paulatinamente se fue consolidando como una especialidad de ingeniería, en la que además de las dos áreas mencionadas, también se incorporaron elementos importantes como los sistemas informáticos, microelectrónica, inteligencia artificial y teoría de control. Para el Ingeniero Luis Llano, director del programa de mecatrónica de la Universidad Militar Nueva Granada, la mecatrónica nace para suplir tres necesidades latentes; la primera, encaminada a automatizar la maquinaría y lograr así procesos productivos ágiles y confiables; la segunda crear productos inteligentes, que respondan a las necesidades del mundo moderno; y la tercera, por cierto muy importante, armonizar entre los componentes mecánicos y electrónicos de las máquinas, ya que en muchas ocasiones, era casi imposible lograr que tanto mecánica como electrónica manejaran los mismos términos y procesos para hacer o reparar equipos. Según Llano, en el pasado, cada vez que un problema afectaba cualquier tipo de maquinaria con componentes mecánicos y electrónicos, había que recurrir por separado a profesionales especialistas en cada una de las áreas, y era muy difícil ponerlos de acuerdo sobre la solución del inconveniente, ya que cada profesional manejaba terminología y conceptos diferentes. En este punto, la mecatrónica empezó a ser de gran utilidad, ya que integró de manera armoniosa los conceptos que cada ciencia manejaba por separado, para lograr de esta forma, convertirse en una ingeniería capaz de aportar lo mejor de cada área.

La mecatrónica ha evolucionado en la medida que se han podido integrar los avances logrados por sus diversos componentes. A pesar de que no se puede hablar de fechas exactas, el crecimiento de la mecatrónica ha sido evidente. Históricamente el proceso se divide en tres etapas básicas que son

• Primera etapa: Finales de 1978 – comienzo de 1980. Fue el periodo en el cual se introdujo el término en el medio industrial, y se buscó su aceptación. En esta etapa, cada una de las ingenierías que ahora abarca la mecatrónica se desarrollaba independientemente.

• Segunda etapa: Década de 1980. Inicia la integración sinérgica de los componentes actuales (mecá-nica, electrónica, informática), se consolida la interdisciplinariedad de la nueva ciencia y se acuña el término a partir de la experiencia inicial en Japón.

• Tercera etapa: Finales de la década de 1980 – Década 1990. Dicho periodo puede considerarse como el que inicia la era de la mecatrónica, y se basa en el desarrollo de la inteligencia computacional y los sistemas de información. Una característica importante de esta última etapa es la miniaturización de los componentes en forma de micro procesadores y micro sensores, integrados en sistemas micro electromecánicos o en micro mecatrónica. Actualmente la era digital dirige el rumbo de la mecatrónica, aplicada al desarrollo de software y hardware para computadores, de máquinas y sistemas inteligentes, y de automatizaciones industriales.

Áreas de conocimiento

La mecatrónica nace para suplir tres necesidades latentes; la primera, encaminada a automatizar la maquinaría y lograr así procesos productivos ágiles y confiables; la segunda crear productos inteligentes, que respondan a las necesidades del mundo moderno; y la tercera, por cierto muy importante, armonizar entre los componentes mecánicos y electrónicos de las máquinas, ya que en muchas ocasiones, era casi imposible lograr que tanto mecánica como electrónica manejaran los mismos términos y procesos para hacer o reparar equipos.

Un ingeniero en mecatrónica es un profesional con amplio conocimiento teórico, práctico y multidisciplinario capaz de integrar y desarrollar sistemas automatizados y/o autónomos que involucren tecnologías de varios campos de la ingeniería. Este especialista entiende sobre el funcionamiento de los componentes mecánicos, eléctricos, electrónicos y computacionales de los procesos industriales, y tiene como referencia el desarrollo sostenible.

Tiene la capacidad de seleccionar los mejores métodos y tecnologías para diseñar y desarrollar de forma integral un producto o proceso, haciéndolo más compacto, de menor costo, con valor agregado en su funcionalidad, calidad y desempeño. Su enfoque principal es la automatización industrial, la innovación en el diseño y la construcción de dispositivos y máquinas inteligentes.

Un ingeniero mecatrónico se capacita para:

  • Diseñar, construir e implementar productos y sistemas mecatrónicos para satisfacer necesidades emergentes, bajo el compromiso ético de su impacto económico, social, ambiental y político.
  • Generar soluciones basadas en la creatividad, innovación y mejora continua de sistemas de control y automatización de procesos industriales.
  • Apoyar a la competitividad de las empresas a través de la automatización de procesos.
  • Evaluar, seleccionar e integrar dispositivos y máquinas mecatrónicas, tales como robots, tornos de control numérico, controladores lógicos programables, computadoras industriales, entre otros, para el mejoramiento de procesos industriales de manufactura.
  • Dirigir equipos de trabajo multidisciplinario.

En el plan de estudios de la ingeniería mecatrónica usualmente se encuentra:

  • Matemáticas: lógica Matemática y conjuntos, cálculo diferencial e integral, álgebra lineal, cálculo vectorial, ecuaciones diferenciales, variable compleja, probabilidad y estadística, métodos numéricos.
  • Física: mecánica clásica, electricidad y magnetismo, termodinámica, óptica, estática, cinemática y dinámica de cuerpo rígido, mecánica de fluidos.
  • Eléctrica y electrónica: electrónica digital, electrónica analógica, filtros electrónicos, circuitos eléctricos en el dominio del tiempo y frecuencia, sistemas embebidos, procesamiento digital de señales, electrónica de potencia, sensores y actuadores, sistemas electromecánicos.
  • Computación: programación estructurada, programación orientada a objetos, sistemas en tiempo real, programación concurrente, simulación de sistemas.
  • Ingeniería mecánica: ciencia e ingeniería de materiales, mecánica de materiales, procesos de manufactura, diseño asistido por computadora (CAD), manufactura integrada por computadora (CAM), elemento finito (CAE), análisis y síntesis de mecanismos, diseño de elementos de máquinas, neumática e hidraúlica, vibraciones mecánicas,mantenimiento preventivo y correctivo.
  • Control automático: sistemas lineales enfoque clásico, sistemas lineales enfoque moderno, sistemas lineales digitales enfoque clásico y moderno, sistemas no lineales, identificación de sistemas.
  • Mecatrónica: diseño mecatrónico, robótica, optimización en ingeniería, sistemas de manufactura flexible,automatización, control de sistemas mecatrónicos.
  • Ingeniería industrial: contabilidad de costos, ingeniería económica, administración de empresas, administración de proyectos, investigación de operaciones, sistemas de calidad, desarrollo sustentable, tecnología y medio ambiente.
  • Especialidad: El estudiante de ingeniería en mecatrónica debe tener un grupo de materias optativas que le permitan ser especialista en algún campo de aplicación de la mecatrónica. Así, si el estudiante desea continuar con estudios de posgrado o trabajar, tendrá una formación sólida. La especialidad debe contener componentes importantes de teoría y práctica, convergiendo a un proyecto que dará como resultado patentes y publicaciones científicas.

Industralizacion

La nueva era mecatrónica ha logrado generar mediante la fusión acertada de los principios que la rigen, máquinas herramientas computarizadas, sistemas flexibles de producción y robots aptos para intervenir en los diferentes procesos productivos industrializados. Los principales aportes y adelantos en automatización y robótica han permitido que los procesos de fabricación industrial alcancen diferentes niveles y grados. De hecho los robots son buenos ejemplos del aporte de la mecatrónica a la industria, ya que gracias a su integración en varias áreas se agilizan los procesos y se desarrolla una más eficiente producción en serie. Según la organización internacional para la estandarización ISO, el robot industrial es un manipulador multifuncional, reprogramable, de posiciones o movimientos automáticamente controlados, con varios ejes, capaz de manejar materiales, partes, herramientas o instrumentos especializados a través de movimientos variables programados para la ejecución de varias tareas.

Con frecuencia tienen la apariencia de uno o varios brazos que terminan en una muñeca; su unidad de control utiliza un sistema de y algunas veces puede valerse de instrumentos sensores y adaptadores que responden a estímulos del medio ambiente y sus circunstancias, así como las adaptaciones realizadas. Estas máquinas multifuncionales son generalmente diseñadas para realizar funciones repetitivas y pueden ser adaptados a otras funciones sin alteraciones permanentes en el equipo. Teniendo en cuenta lo anterior, se puede afirmar, que los avances de la mecatrónica, específicamente en el área de robótica, ayudan a la industria en varios aspectos:

• Fundición en molde (die-casting): esta fue la primera aplicación industrial.

• Soldadura de punto: utilizada en la industria automotriz

• Soldaduras de arco: no requiere de modificaciones sustanciales en el equipo de soldadura y aumenta la flexibilidad y la velocidad.

• Moldeado por extrusión: de gran Importancia por creciente la demanda de partes especializadas de gran complejidad y precisión.

• Forjado (Forglng): la principal aplicación es la manipulación de partes metálicas calientes.

• Aplicaciones de prensado (presswork): partes y panales de vehículos y estructuras de aviones, electrodomésticos y otros productos metalmecánicos. Esta es un área de rápido desarrollo de nuevos tipos de robot.

• Pinturas y tratamiento de superficies: el mejoramiento de las condiciones de trabajo y la flexibilidad han sido las principales razones para el desarrollo de estas aplicaciones.

• Moldeado plástico: descarga de máquinas de inyección de moldes, carga de moldes, paletización y empaque de moldes, etc.

• Aplicaciones en la Fundición: carga y descarga de máquinas, manejo de materiales calientes, manejo de moldes, etc.

• Carga y Descarga de Máquina Herramientas: los robots aumentan la flexibilidad y versatilidad de las máquinas herramientas y permiten su articulación entre si. Contribuyen a la reducción de stocks, minimizan costos del trabajo directo e indirecto, aumentan la calidad de la producción.

Diversas aplicaciones industriales implican la clasificación de los robots en cuatro tipos de operaciones efectuadas:

  • Robots para manejo de materiales: carga y descarga de máquinas herramienta, moldeado de plástico.
  • Robots de tratamiento de superficie: pintura, limpieza.
  • Robots de en ensamblaje y transferencia.
  • Robots de soldadura.
  • Robots de procesamiento por calor; moldeado, prensado, etc.

Aquí se demuestran maquinas industrializadas trabajando:

Campo Ocupacional

El campo ocupacional actual del ingeniero en mecatrónica está en empresas de la industria automotriz, manufacturera, petroquímica, metal-mecánica, alimentos y electromecánica, realizando sobre todo actividades de diseño, manu factura, programación de componentes y sistemas industriales y equipo especializado, así como en la promoción y activación de empresas de servicios profesionales.

  • Automatización: en la gran mayoría de las empresas del sector industrial, comercial y de servicios donde se utiliza con mayor incidencia los medios electrónicos y de automatización; ejerciendo la profesión en empresas de tipo: minera, manufactura, electricidad, comercio, comunicaciones y servicios; asimismo, por cuenta propia puede desarrollar la actividad profesional en gestión de empresas, ejecutando libremente servicios específicos requeridos por los clientes.
  • Manufactura flexible: empresas dedicadas a la fabricación de sistemas y componentes eléctricos o electrónicos. Empresas dedicadas a integrar proyectos de automatización de procesos. Área de mantenimiento de sistemas automatizados en: Industrias químicas, farmacéuticas, transformación de la madera, metal mecánica, automotriz, textil y de la confección, proceso de alimentos, sector eléctrico, empresas dedicadas a proporcionar servicios generales especializados.

Comment Stream

2 years ago
1

muy bueno :v