# Library of Functions

### By:Christian Best & Alicia Small

Domain: All Reals / Range: [O, Infinity)

Zeros: x=0

Y-Axis Symmetry / Even Function

Periodic: No / One-To-One Function: No

Domain: All Reals / Range: All Reals

Zeros: x=0

Origin Symmetry / Odd Function

Periodic: No / One-to-one Function: Yes

Domain: All Reals  / Range: [0, Infinity)

Zeros: x = 0

Y-axis Symmetry / Even Function

Periodic: No / One-to-One Function: No

Domain: All Reals / Range: [-1, 1]

Zeros: Integral Multiples of pi

Origin Symmetry / Odd Function

Periodic : 2pi / One-to-one Function: No

Domain: All Reals / Range: [-1,1]

Zeros: Odd Multiples of pi/2

Y-Axis Symmetry / Even Function

Periodic: 2pi /One-to-One Function: No

Domain: All Reals except Odd Multiples of pi/2 / Range: All Reals

Zeros: Integral Multiples of pi

Origin Symmetry / Odd Function

Periodic: Pi / One-to-one Function: No

Domain: All Reals Except The Odd Multiples Of pi/2 / Range: (-Infinity,-1] U [1,Infinity)

Zeros: N/a

Y-Axis Symmetry / Even Function

Periodic : 2pi / One-to-One Function: No

Domain: All Reals / Range: (0,infinity)

Zeros: N/a

No Symmetry / Neither Even Nor Odd Function

Periodic: None / One-to-One Function: Yes

Domain: (0,infinity) / Range: All Reals

Zeros: x=1

No Symmetry / Neither Even Nor Odd Function

Periodic: No / One-to-One Function: Yes

Domain: All Reals except 0 / Range: All Reals except 0

Zeros: N/a

Origin Symmetry / Odd Function

Periodic: No / One-to-One Function: Yes

Domain: [0,infinity) / Range: [0,infinity)

Zeros: x=0

No Symmetry / Neither Even Nor Odd Function

Periodic: No / One-to-One Function: Yes

Domain: [-a,a] / Range: [0,a]

Zeros: -a,a

Y-Axis Symmetry / Even Function

Periodic: No / One-to-One: No