Диофантовы уравнения

Диофантовы уравнения

Сегодня мы с вами разберем особый вид уравнений, называемые диофантовыми.

Диофантовыми уравнениями называют алгебраические уравнения или системы алгебраических уравнений с целыми коэффициентами, для которых надо найти целые или рациональные решения. При этом число неиз­вестных в уравнениях должно быть не менее двух (если не ограничиваться только целыми числами). Диофантовы уравнения имеют, как правило, много решений, поэтому их называют неопределенными уравнениями.

К диофантовым уравнениям приводят задачи, по смыслу которых неизвест­ные значения величин могут быть только целыми числами.

Современной постановкой диофантовых задач мы обязаны Ферма.

Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Надо сказать, что это не было изобретением Ферма - он только возродил интерес к поиску целочисленных решений. А вообще задачи, допускающие только целые решения, были распространены во многих странах в очень далёкие от нас времена.

Существует множество решений Диофантовых уравнений: Способ перебора вариантов, Алгоритм Евклида, Малая теорема Ферма и остальные не менее известные способы.

Вот самые простые способы решения:

5х - 8у = 19 … (1)

Решение.

Первый способ. Нахождение частного решения методом подбора и запись общего решения.

Знаем, что если Н.О.Д.(а;в) =1, т.е. а и в взаимно-простые числа, то уравнение (1)

имеет решение в целых числах х и у. Н.О.Д.(5;8) =1. Методом подбора находим частное решение: Хо = 7; уо =2.

Итак, пара чисел (7;2) - частное решение уравнения (1).

Значит, выполняется равенство: 5 x 7 – 8 x 2 = 19 … (2)

Вопрос: Как имея одно решение записать все остальные решения?

Вычтем из уравнения (1) равенство (2) и получим: 5(х -7) – 8(у - 2) =0.

Отсюда х – 7 = . Из полученного равенства видно, что число (х – 7) будет целым тогда и только тогда, когда (у – 2) делится на 5, т.е. у – 2 = 5n, где n какое-нибудь целое число. Итак, у = 2 + 5n, х = 7 + 8n, где n Z.

Тем самым все целые решения исходного уравнения можно записать в таком виде:

n Z.

Второй способ. Решение уравнения относительно одного неизвестного.

Решаем это уравнение относительно того из неизвестных, при котором наименьший (по модулю) коэффициент. 5х - 8у = 19 х = .

Остатки при делении на 5: 0,1,2,3,4. Подставим вместо у эти числа.

Если у = 0, то х = =.

Если у =1, то х = =.

Если у = 2, то х = = = 7 Z.

Если у =3, то х = =.

Если у = 4 то х = =.

Итак, частным решением является пара (7;2).

Тогда общее решение: n Z.

Третий способ. Универсальный способ поиска частного решения.

Для решения применим алгоритм Евклида. Мы знаем, что для любых двух натуральных чисел а, в, таких, что Н.О.Д.(а,в) = 1 существуют целые числа х,у такие, что ах + ву = 1.

План решения:

1. Сначала решим уравнение 5m – 8n = 1 используя алгоритм Евклида.

2. Затем найдем частное решение уравнения (1)по правилу 2.

3. Запишем общее решение данного уравнения (1).

1. Найдем представление: 1 = 5m – 8n. Для этого используем алгоритм Евклида.

8 = 5 1 + 3.

5 = 3

3 = 2 .

Из этого равенства выразим 1. 1 = 3 - 2 = 3 – (5 - 3 ) =

= 3 - 5 = 3 = (8 - 5 - 5 82 -5

= 5(-2). Итак, m = -3, n = -2.

2. Частное решение уравнения (1): Хо = 19m; уо =19n.

Отсюда получим: Хо =19; уо =19 .

Пара (-57; -38)- частное решение (1).

3. Общее решение уравнения (1): n Z.

Четвертый способ. Геометрический.

План решения.

1. Решим уравнение 5х – 8у = 1 геометрически.

2. Запишем частное решение уравнения (1).

3. Запишем общее решение данного уравнения (1).

1

Отложим на окружности последовательно друг за другом равные дуги, составляющие

-ю часть полной окружности. За 8 шагов получим все вершины правильного вписанного в окружность 8-угольника. При этом сделаем 5 полных оборотов.

На 5 – ом шаге получили вершину, соседнюю с начальной, при этом сделали 3 полных оборота и еще прошли - ю часть окружности, так что х = у + .

Итак, Хо = 5, уо =3 является частным решением уравнения 5х – 8у = 1.

2. Частное решение уравнения (1): Хо = 19 уо =19

3. Общее решение уравнения (1): n Z.

Прах Диофанта гробница покоит; дивись ей - и камень.

Мудрым искусством его скажет усопшего век.

Волей богов шестую часть жизни он прожил ребенком.

И половину шестой встретил с пушком на щеках.

Только минула седьмая. С подругой он обручился.

С нею, пять лет проведя, сына дождался мудрец;

Только полжизни отцовской, возлюбленный сын его прожил.

Отнят он был у отца ранней могилой своей.

Дважды два года родитель оплакивал тяжкое горе,

Тут и увидел предел жизни печальной своей.

(Перевод Боброва С.Н.)


Используя современные методы решения уравнений можно сосчитать, сколько лет прожил Диофант.

Пусть Диофант прожил x лет. Составим и решим уравнение:

Умножим уравнение на 84, чтобы избавиться от дробей:



Таким образом, Диофант прожил 84 года.*(Энциклопедический словарь юного математика. составитель Савин А.П.– Москва: педагогика, 1989 г.)

Другие примеры, исторические задачи

А теперь решите несколько задач самостоятельно.

1)Крестьянка несла на базар корзину яиц. Неосторожный всадник, обгоняя женщину, задел корзину, и все яйца разбились. Желая возместить ущерб, он спросил у крестьянки, сколько яиц было в корзине. Она ответила, что число яиц не знает, но когда она раскладывала их по 2, по 3, по 4, по 5 и по 6, то каждый раз одно яйцо оставалось лишним, а когда она разложила по 7, лишних яиц не осталось. Сколько яиц несла крестьянка на базар?

2) В клетке находится x фазанов и у кроликов. Сколько в клетке фазанов и кроликов, если общее количество ног равно 62.

3) Три сестры пошли на рынок с курами. Одна принесла для продажи 10 кур, другая – 16, третья – 26. До полудня они продали часть своих кур по одной и той же цене. После полудня, опасаясь, что не все куры будут проданы, они понизили цену и распродали оставшихся кур снова по одинаковой цене. Домой все трое вернулись с одинаковой выручкой: каждая сестра получила от продажи 35 рублей. По какой цене они продавали кур до и после полудня?

4) Шехерезада рассказывает свои сказки великому правителю. Всего она должна рассказать 1001 сказку. Сколько ночей потребуется Шехерезаде, чтобы рассказать все свои, если x ночей она будет рассказывать по 3 сказки, а остальные сказки по 5 за у ночей?

5) Пять моряков высадились на остров и к вечеру собрали кучу кокосовых орехов. Дележ отложили на утро. Один из них, проснувшись ночью, пересчитал добычу, угостил одним орехом мартышку, а из остальных орехов взял себе точно 1/5 часть, после чего вновь лег спать и быстро уснул. За ночь так же поступили один за другим и остальные моряки; при этом каждый не знал о действиях своих предшественников. Наутро они поделили оставшиеся орехи поровну, но для мартышки в этот раз лишнего ореха не осталось. Сколько орехов собрали моряки?

6) Некто купил 30 птиц за 30 монет, уплатив за каждые 3 воробья по одной монете, за каждые 2 горлицы – тоже по 1 монете, за каждого голубя – по 2. Сколько куплено птиц каждого вида?

7) Двенадцать человек несут 12 хлебов: каждый мужчина несет по 2 хлеба, женщина-по половине, а ребенок по четверти. Сколько было мужчин женщин и детей?

8) Хозяин послал работника на базар купить 20 птиц: гусей, уток и малых чирков. Он дал работнику 16 алтын. Гусей велел покупать по 3 копейки за штуку, уток по копейке, а малых чирков по два на копейку. Сколько гусей, сколько уток и сколько чирков купил работник?

9) Некто купил вещь, заплатив за нее 157 рублей 50 копеек, причем платил одинаковым числом рублевых монет и полтинников. Сколько было полтинников (полтинник- 50 копеек)?

10) Как составить сумму в 99 копеек из 22 монет по 2, 3 и 5 копеек?

Ссылки:

http://ru.wikipedia.org/wiki/%D0%94%D0%B8%D0%BE%D1%84%D0%B0%D0%BD%D1%82%D0%BE%D0%B2%D0%BE_%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5

http://works.doklad.ru/view/na298o15cHQ.html

http://festival.1september.ru/articles/501260/

http://www.sciteclibrary.ru/rus/catalog/pages/9678.html

http://dxdy.ru/post789736.html

http://rudocs.exdat.com/docs/index-538801.html

http://dic.academic.ru/dic.nsf/enc_mathematics/3394/%D0%9D%D0%95%D0%9E%D0%9F%D0%A0%D0%95%D0%94%D0%95%D0%9B%D0%95%D0%9D%D0%9D%D0%9E%D0%95

http://rudocs.exdat.com/docs/index-12425.html?page=2

http://nsportal.ru/shkola/algebra/library/diofantovy-uravneniya-i-metody-ikh-resheniya

Литература:

    1) Старинные занимательные задачи

    2) Элективный курс

    Сказки Шехерезады и уравнения Диофанта

    3) Энциклопедический словарь юного математика

    4) Энциклопедия занимательной математики

    5) Энциклопедия высшей математики

Comment Stream