Теорема Ферма и её роль в развитии математики

Эссе Земляникиной Анастасии


Учёные, внёсшие вклад в развитие теоремы Ферма.

Xn + Yn = Zn

Великая теорема Ферма утверждает, что при значениях параметра «n» (степени уравнения), превышающих двойку, целочисленных решений (X,Y,Z) данного уравнения не существует (кроме, конечно, решения, когда все эти переменные равны нулю одновременно). Притягательная сила этой теоремы Ферма для широкой публики очевидна: нет другого математического утверждения, обладающего такой простотой формулировки, кажущейся доступностью доказательства, а также привлекательностью его «статусности» в глазах общества. До Уайлса дополнительным стимулом для ферматистов (так назвали людей, маниакально атаковавших проблему Ферма) являлся учрежденный почти сто лет назад приз немца Вольфскеля за доказательство, правда небольшой по сравнению с Нобелевской премией - он успел обесцениться во время первой мировой войны. Кроме того, всегда привлекала вероятная элементарность доказательства, так как сам Ферма «ее доказал», написав на полях перевода «Арифметики» Диофанта: «Я нашел этому поистине чудесное доказательство, но поля здесь слишком узки, чтобы вместить его». Вот почему здесь уместно привести оценку актуальности популяризации доказательства Уайлса проблемы Ферма, принадлежащую известному американскому математику Рему Мерти (R. Murty) (цитируем по выходящему скоро переводу книги Ю. Манина и А. Панчишкина «Введение в современную теорию чисел»): «Большая теорема Ферма занимает особое место в истории цивилизации. Своей внешней простотой она всегда притягивала к себе как любителей, так и профессионалов.… Все выглядит так, как если бы было задумано неким высшим разумом, который в течение веков развивал различные направления мысли лишь затем, чтобы потом воссоединить их в один захватывающий сплав для решения Большой теоремы Ферма. Ни один человек не может претендовать на то, чтобы быть экспертом во всех идеях, использованных в этом «чудесном» доказательстве. В эпоху всеобщей специализации, когда каждый из нас знает «все больше и больше о все меньшем и меньшем», совершенно необходимо иметь обзор этого шедевра…»

Вокруг манящей своей кажущейся простотой коварной теоремы всегда кипели нешуточные страсти. История ее доказательства – сплошные драмы, мистика и даже непосредственные жертвы. Пожалуй, самая знаковая жертва – Ютака Танияма (1927-1958). Именно этот молодой талантливый японский математик, отличавшийся в жизни большой экстравагантностью, создал в 1955 году основу для атаки Уайлса. На основе его идей Горо Шимура и Андре Вейль несколькими годами позже (60-67 годы) окончательно сформулировали знаменитую гипотезу, доказав значительную часть которой, Уайлс получил теорему Ферма как следствие. Мистика истории смерти нетривиального Ютаки связана с его бурным темпераментом: он повесился в возрасте тридцати одного года на почве несчастной любви. Вся длинная история загадочной теоремы сопровождалась постоянными объявлениями о ее доказательстве, начиная с самого Ферма. Постоянно находящиеся ошибки в нескончаемом потоке доказательств постигали не только математиков-любителей, но и математиков-профессионалов. Это привело к тому, что термин «ферматист», применяемый к доказывающим теорему Ферма, стал нарицательным. Постоянно сохраняющаяся интрига с ее доказательством приводила иной раз к забавным казусам. Так, когда в первом варианте уже широко разрекламированного доказательства Уайлса обнаружился пробел, на одной из станций нью-йоркского метро появилась ехидная надпись: «я нашел поистине чудесное доказательство Великой теоремы Ферма, но пришел мой поезд и я не успеваю его записать».

Доказательство Уайлса, появившееся как гром среди ясного неба, стало своеобразным тестом для международного математического сообщества. Реакция даже самой прогрессивной части этого сообщества в целом оказалась, как ни странно, довольно нейтральной. После того как улеглись эмоции и восторги первого времени после появления знакового доказательства все спокойно продолжили свои дела. Специалисты по арифметической алгебраической геометрии потихоньку изучали «могучее доказательство» в своем узком кругу, остальные же бороздили свои математические тропы, расходясь, как и ранее, все дальше друг от друга.

На мехмате МГУ, все-таки, появляются энтузиасты доказательства . Замечательный математик и ученый-популяризатор Ю.П. Соловьев (безвременно ушедший от нас) инициирует перевод книги Э.Кнэппа по эллиптическим кривым с необходимым материалом по гипотезе Таниямы–Шимуры-Вейля. Алексей Панчишкин, работащий ныне во Франции, в 2001-м году читает на мехмате лекции, положенные в основу соответствующей части его с Ю.И. Маниным великолепной, упомянутой выше книги по современной теории чисел ( выходящей в русском переводе Сергея Горчинского с редактурой Алексея Паршина в 2007г.).

Comment Stream